A METHOD FOR INVESTIGATING GEOMETRIC PROPERTIES OF SUPPORT POINTS AND APPLICATIONS

BY JOHNNY E. BROWN¹

ABSTRACT. A normalized univalent function f is a support point of S if there exists a continuous linear functional L (which is nonconstant on S) for which f maximizes $\operatorname{Re} L(g), g \in S$. For such functions it is known that $\Gamma = \mathbf{C} - f(U)$ is a single analytic arc that is part of a trajectory of a certain quadratic differential $Q(w) \, dw^2$. A method is developed which is used to study geometric properties of support points. This method depends on consideration of $\operatorname{Im}\{w^2Q(w)\}$ rather than the usual $\operatorname{Re}\{w^2Q(w)\}$. Qualitative, as well as quantitative, applications are obtained. Results related to the Bieberbach conjecture when the extremal functions have initial real coefficients are also obtained.

1. Introduction. Let $\mathcal{H}(U)$ denote the space of all functions analytic in the unit disk $U=\{z\colon |z|<1\}$. Given the topology of uniform convergence on compact subsets of U, the space $\mathcal{H}(U)$ becomes a locally convex topological vector space. A particular subset of $\mathcal{H}(U)$ is the class S. This class consists of all functions f which are univalent in U and normalized so that f(0)=0 and f'(0)=1. We call $f\in S$ a support point if there exists a continuous linear functional L defined on $\mathcal{H}(U)$ which is nonconstant on S and

$$\max_{g \in S} \operatorname{Re} L(g) = \operatorname{Re} L(f).$$

It is well known that all rotations of the Koebe function $k_{\theta}(z) = z/(1 + e^{i\theta}z)^2$ are support points of S as well as extreme points of the closed convex hull of S [1, 14]. These functions map the unit disk onto the complement of a radial slit from $e^{-i\theta}/4$ to infinity. A natural question to ask is which of the geometric properties of the functions k_{θ} are typical of those of arbitrary support points of S. It is known that if f is a support point of S then $\Gamma = \mathbf{C} - f(U)$ is a single analytic arc which tends to infinity with increasing modulus and Γ possesses the $\pi/4$ -property: the angle between the radius and tangent vectors never exceeds $\pi/4$ in absolute value [9, 3, 6].

The principal tool used in the study of support points is the Schiffer variational method [12]. It implies that the arc Γ satisfies a differential equation of the form

(1)
$$w^{-2}L(f^2/(f-w)) dw^2 > 0.$$

In the past it was consideration of $\text{Re}\{L(f^2/(f-w))\}\$ which led to geometric properties of Γ (in particular, the $\pi/4$ -property is obtained in this way). The basic

Received by the editors September 13, 1982 and, in revised form, February 15, 1984; presented to the American Mathematical Society at the 88th annual meeting, January 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30C70; Secondary 30C50.

¹This work was supported in part by NSF Grants MCS-8002703 and MCS-8200682.

286 J. E. BROWN

reason stems from the fact that for each $w \in \Gamma$, the competing function defined by $f_w(z) = wf(z)/(w-f(z))$ gives $L(f-f_w) = L(f^2/(f-w))$. The purpose of this paper is to present a method whereupon consideration of $\operatorname{Im}\{L(f^2/(f-w))\}$ will also lead to geometric properties of Γ . We apply this method to obtain qualitative, as well as quantitative, results about various support points. It is believed that the omitted arc Γ of a support point has monotonic argument. We prove that this is indeed the case for the functional $L(g) = \alpha a_2 + \beta a_3$ ($\alpha, \beta \in \mathbb{C}$). This generalizes the result in [4]. For this functional we also show that Γ must lie in a certain halfplane that can be determined. A result is presented which implies the Bieberbach conjecture under a certain hypothesis.

2. A geometric method. The method presented in this section is implicit in work of Charzynski and Schiffer [5] and later in Bombieri [2]. We shall present the method in a form applicable to support points of S. This method is based on the behavior of trajectories of certain quadratic differentials. These properties can be found in [7] and [7].

LEMMA 1. Let Ω be a simply-connected region not containing the origin and let Ω be bounded by a trajectory arc γ of $\psi(\omega) d\omega^2/\omega^2$ and a simple arc C. Let $\gamma \cap C = \{p_0, p_1\}$ and suppose that ψ/ω^2 is analytic on $\overline{\Omega} \setminus \{p_0, p_1\}$. Suppose further that p_0 and p_1 are not poles of order larger than one for $\psi(\omega) d\omega^2/\omega^2$. If $\psi \neq 0$ on $\partial \Omega \setminus \{p_0, p_1\}$ then there exists a simply-connected region $\Omega^* \subset \Omega$, bounded by a trajectory arc γ^* of $\psi(\omega) d\omega^2/\omega^2$ and a connected subarc $C^* \subset C$, such that $\psi \neq 0$ on $\overline{\Omega^*}$.

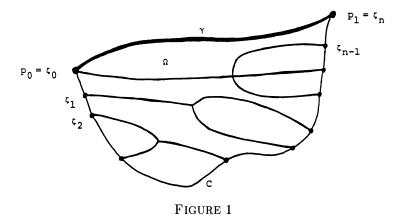
PROOF. It is well known that there are exactly n+2 trajectories issuing from each zero of order n of a quadratic differential and a single trajectory issuing at each simple pole [10]. By our hypotheses we see that $\psi(\omega) d\omega^2/\omega^2$ has no poles in $\overline{\Omega} \setminus \{p_0, p_1\}$, and the points p_0 and p_1 are at worst simple poles. Hence, there are no trajectories in $\overline{\Omega}$ homotopic to a point since these occur only for poles of order larger than one [10].

Case 1. $\psi \neq 0$ in Ω .

There are only finitely many trajectories issuing from p_0 and p_1 . If z^* is any fixed point of Ω not on these trajectories then there is a unique trajectory arc γ^* in Ω passing through z^* . Now $\overline{\gamma}^*$ does not contain p_0 and p_1 , and clearly, $\overline{\gamma}^* \cap C$ consists of exactly two points ς_1 and ς_2 (since no trajectory is homotopic to a point, and trajectories do not cross). Let C^* be the connected subarc of C from ς_1 to ς_2 and Ω^* the resulting simply-connected region with $\partial \Omega^* = \gamma^* \cup C^*$. This region satisfies the conclusion of the lemma.

Case 2. $\psi = 0$ in Ω .

There are at least three trajectories issuing from each of the finite number of zeros of ψ in Ω and a finite number of trajectories from p_0 and p_1 . Let \mathcal{T} denote the union of all such trajectories in Ω , together with γ . Since there are no trajectories in $\overline{\Omega}$ homotopic to a point, each $\tilde{\gamma} \in \mathcal{T}$ has two endpoints which must be either p_0, p_1 , a zero of ψ , or a point of C. Let $I = \overline{\mathcal{T}} \cap C = \{\varsigma_0, \varsigma_1, \ldots, \varsigma_n\}$. This set is nonempty since $p_0, p_1 \in I$. For convenience we let $\varsigma_0 = p_0, \ \varsigma_n = p_1$, and we reindex if necessary so that as we traverse C from p_0 to p_1 we follow $\varsigma_0, \varsigma_1, \ldots, \varsigma_n$ in this order. (See Figure 1.)



We let I_0 denote the set of all points of I that can be joined to ς_0 by a union of trajectories in \mathcal{T} . Let ς_{m_0} be the point of I_0 with m_0 minimal. Let $\Omega_0 \subset \Omega$ be the resulting region bounded by the subarc $C_0 \subset C$ from ς_0 to ς_{m_0} and the corresponding (unique) union of trajectories joining ς_0 to ς_{m_0} . If $\psi \neq 0$ in Ω_0 , we proceed as in Case 1 and we are done. If $\psi = 0$ in Ω_0 , we let I_1 be the set of all points in I that can be joined to ς_1 by a union of trajectories in \mathcal{T} . Let ς_{m_1} be the point of I_1 with m_1 minimal (clearly $m_1 < m_0$). Let $\Omega_1 \subset \Omega_0$ be the resulting region bounded by the subarc $C_1 \subset C_0$ from ς_1 to ς_{m_1} and the corresponding union of trajectories in \mathcal{T} joining ς_1 to ς_{m_1} . If $\psi \neq 0$ in Ω_1 , we proceed as in Case 1. If not, we continue this process, which terminates since ψ has only a finite number of zeros in Ω . The proof of the lemma is complete.

THEOREM 1. Let $\psi(\omega) \, d\omega^2/\omega^2$ be a quadratic differential which has a simple pole at $\omega=0$ and no other poles in $|\omega| \leq \rho$. Let Γ_0 be the unique trajectory which terminates at $\omega=0$. Suppose ψ is nonzero on Γ_0 except at $\omega=0$.

- (a) If $\operatorname{Im} \psi(\omega) \neq 0$ on the radial segment $J: \omega = te^{i\theta}, 0 < t < \rho$, then $\Gamma_0 \cap J = \emptyset$.
- (b) If $\operatorname{Im} \psi(\omega) \neq 0$ on the radial segment J': $\omega = te^{i\theta}, 0 \leq \rho_0 < t < \rho_1 < \rho$, and Γ_0 lies in a sector of opening less than 2π , then Γ_0 intersects $\overline{J'}$ (closure of J') at most once.

The condition $\operatorname{Im} \psi(\omega) \neq 0$ on J says geometrically that no trajectory or orthogonal trajectory is ever tangent to J. In particular, if Γ_0 intersects J it must actually cross J. Analytically the condition implies that $\operatorname{Im}\{\sqrt{\psi(\omega)}\}\neq 0$ on J; i.e., $\operatorname{Im}\{\sqrt{\psi(\omega)}\}$ retains its sign along J.

PROOF. (a) Assume that $\Gamma_0 \cap J \neq \emptyset$. We would like to be able to apply Lemma 1, so we first prove the existence of a simply-connected region Ω as in the lemma. Suppose first that there exists a point $\omega_0 \in \Gamma_0 \cap J$ nearest the origin. Let C be that part of J from 0 to ω_0 , and let γ be that part of Γ_0 from 0 to ω_0 . Let Ω be the corresponding simply-connected region bounded by γ and C. Assume now that Γ_0 crosses J an infinite number of times near $\omega = 0$. Since $\psi(\omega) d\omega^2/\omega^2$ has a simple pole at $\omega = 0$, we know that Γ_0 is asymptotic to a line at $\omega = 0$. Thus, the part of Γ_0 in a sufficiently small disk $|\omega| < \rho^* < \rho$ lies in a half-plane. In this disk we choose two consecutive points ζ_1 , ζ_2 of $\Gamma_0 \cap J$. Let γ be the subarc of Γ_0 from ζ_1

288 J. E. BROWN

to ζ_2 , C the part of J from ζ_1 to ζ_2 , and Ω the region bounded by γ and C. Thus, in either case, we have found a region Ω as asserted.

For the choice of Ω as above we let $\gamma \cap C = \{p_0, p_1\}$ and observe that ψ is analytic on $\overline{\Omega} \setminus \{p_0, p_1\}$, $\psi \neq 0$ on $\partial \Omega \setminus \{p_0, p_1\}$, and p_0 and p_1 are at worst simple poles of $\psi(\omega) d\omega^2/\omega^2$. We can thus apply Lemma 1 to conclude that there exists a region $\Omega^* \subset \Omega$ bounded by an arc γ^* of a trajectory and a connected arc C^* of J with ψ nonzero on $\overline{\Omega}^*$. Suppose C^* is the segment of J from ω_1 to ω_2 . Apply Cauchy's Theorem to conclude that $\int_{\partial \Omega^*} \sqrt{\psi(\omega)} d\omega/\omega = 0$. Now since $\sqrt{\psi(\omega)} d\omega/\omega$ is real along γ^* , this implies that

$$0 = \operatorname{Im} \int_{\partial\Omega^{\bullet}} \sqrt{\psi(\omega)} \frac{d\omega}{\omega} = \operatorname{Im} \int_{\omega_{1}}^{\omega_{2}} \sqrt{\psi(\omega)} \frac{d\omega}{\omega} = \int_{\omega_{1}}^{\omega_{2}} \operatorname{Im} \left\{ \sqrt{\psi(\omega)} \frac{d\omega}{\omega} \right\}.$$

However, as noted earlier, $\operatorname{Im}\sqrt{\psi(\omega)} \neq 0$ on J and so $\int_{\omega_1}^{\omega_2} \operatorname{Im}\{\sqrt{\psi(\omega)}d\omega/\omega\} \neq 0$. This gives a contradiction and, hence, $\Gamma_0 \cap J = \emptyset$.

(b) Assume Γ_0 meets $\overline{J'}$ at least twice, say at ω_1 and ω_2 . Now since Γ_0 lies in a sector of opening less than 2π , we let Ω be the region bounded by the subarc γ of Γ_0 from ω_1 to ω_2 and by C, the part of $\overline{J'}$ from ω_1 to ω_2 . We apply the same argument as in (a) to arrive at a contradiction. This completes the proof of the theorem.

In view of the known properties of support points, this theorem is easily seen to be applicable. Let $f \in S$ be a support point for L and let Γ be its omitted arc. Then, by inverting $\omega = 1/w$, we see from (1) that $\Gamma_0 = 1/\Gamma$ is a trajectory of the quadratic differential $\psi(\omega) d\omega^2/\omega^2$, where

(2)
$$\psi(\omega) = L(\omega f^2/(\omega f - 1)).$$

Schiffer [13] proved that $L(f^2) \neq 0$. Thus we see that $\psi(\omega) d\omega^2/\omega^2$ has a simple pole at $\omega = 0$. Brickman and Wilken [3] have shown that ψ is analytic on Γ_0 . It is known that if ψ vanishes on Γ_0 , then Γ_0 must be radial and, hence, by the subordination principle, $f = k_\theta$ [14]. Thus, we may assume ψ is nonzero on Γ_0 . We now turn our attention to applications.

3. Applications. It is well known that if $\omega = 0$ is a simple pole of $\psi(\omega) d\omega^2/\omega^2$, then precisely one trajectory and one orthogonal trajectory will terminate there [10, p. 216]. Let Ω_0 be a single trajectory arc in $|\omega| \leq \rho$ terminating at $\omega = 0$. Since $d\omega^2/\omega^2 > 0$ holds for all radial lines, we see that if

$$\operatorname{Im} \psi(te^{i\theta_1}) \equiv \operatorname{Im} \psi(te^{i\theta_2}) \equiv 0, \qquad 0 \le t \le \rho,$$

for distinct $\theta_1, \theta_2 \in [0, 2\pi)$, then one of the radial segments $\omega = te^{i\theta_1}$ or $\omega = te^{i\theta_2}$, $0 \le t \le \rho$, must be a trajectory terminating at $\omega = 0$. Suppose R: $\omega = te^{i\theta_1}$, $0 \le t \le \rho$, is a trajectory terminating at $\omega = 0$. If ψ is analytic on Γ_0 and nonzero on $\Gamma_0 \setminus \{0\}$, then, because Γ_0 is a single analytic arc also terminating at $\omega = 0$, we must have $\Gamma_0 = R$.

THEOREM 2. If $f(z) = z + \sum_{n=2}^{\infty} A_n z^n$ is a support point for the functional $L(g) = \alpha a_2 + \beta a_3$ $(\alpha, \beta \in \mathbf{C})$, and if Γ is the arc omitted by f, then Γ lies entirely in a half-plane and has monotonic argument.

PROOF. Clearly, if $\beta = 0$ the only support points are k_{θ} , so we may assume $\beta \neq 0$. We also invert by $\omega = 1/w$ and let $\Gamma_0 = 1/\Gamma$. Thus, Γ_0 lies in $|\omega| \leq 4$ by

the Koebe $\frac{1}{4}$ -Theorem. It follows from (2) that Γ_0 is the trajectory (terminating at $\omega = 0$) of $\psi(\omega) d\omega^2/\omega^2$, where

$$\psi(\omega) = -C\omega(1 + D\omega),$$

with $C = 2A_2\beta + \alpha$ and $D = \beta/C$. (Note that $L(f^2) = C \neq 0$.)

We first show that Γ_0 lies in a half-plane. Suppose $\operatorname{Im}\{D\overline{C}\} \neq 0$; then it is clear that $\operatorname{Im}\psi(\overline{C}t) = -|C|^2t^2\operatorname{Im}\{D\overline{C}\} \neq 0$ for $t \neq 0$. It is easy to check that all the hypotheses of Theorem 1 are satisfied, and from (a) we can conclude that Γ_0 lies entirely in a half-plane. In the case $\operatorname{Im}\{D\overline{C}\} = 0$, we simply note that $\operatorname{Im}\psi(i\overline{C}t) = -|C|^2t \neq 0$ for $t \neq 0$. We apply Theorem 1(a) again to conclude that Γ_0 lies in a half-plane.

For each real θ we consider the radial segments in $|\omega| \leq 4$ defined by

$$J_{\theta}$$
: $\omega = te^{i\theta}/D$, $0 < t \le 4|D|$.

Then by putting $\theta_0 = \arg(C/D)$ we see that

(3)
$$\operatorname{Im} \psi(te^{i\theta}/D) = -|Ct/D|[\sin(\theta_0 + \theta) + t\sin(2\theta_0 + \theta)].$$

If Im $\psi(te^{i\theta'}/D) \equiv 0$, $0 \le t \le 4|D|$, for some θ' we see from (3) that

$$\operatorname{Im} \psi(te^{i(\theta'+\pi)}/D) \equiv 0, \qquad 0 \le t \le 4|D|,$$

also holds. Now since $\omega=0$ is a simple pole of $\psi(\omega)\,d\omega^2/\omega^2$, by the above remarks we can conclude that Γ_0 is a radial segment. The subordination principle then yields $f=k_{\theta^*}$ for some real θ^* . Hence, suppose $\operatorname{Im}\psi(te^{i\theta}/D)\not\equiv 0,\ 0\le t\le 4|D|$, for all $\theta\in[0,2\pi)$. Partition each J_{θ} at the zero of $\operatorname{Im}\psi(te^{i\theta}/D)$. That is, let $J_{\theta}=L_{\theta}\cup \bar{l}_{\theta}$, where L_{θ} is the open segment of J_{θ} such that \bar{L}_{θ} contains the origin. (If $\operatorname{Im}\psi(te^{i\theta}/D)\not\equiv 0$ for $0< t\le 4|D|$, we set $l_{\theta}=\{4e^{i\theta}|D|/D\}$ and $L_{\theta}=J_{\theta}\backslash l_{\theta}$.) By construction, $\operatorname{Im}\psi(\omega)$ is nonzero on L_{θ} and l_{θ} . We apply Theorem 1(a) to each L_{θ} to conclude that $\Gamma_0\cap L_{\theta}=\emptyset$. Applying the second part of the theorem to each \bar{l}_{θ} , we see that Γ_0 intersects \bar{l}_{θ} at most once. Hence, Γ_0 can intersect each radial segment in $|\omega|\le 4$ at most once. This says that Γ_0 , hence Γ , has monotonic argument. The proof of the theorem is complete.

Let us suppose that $f(z) = z + \sum_{n=2}^{\infty} A_n z^n$ belongs to S and is a support point for $L(g) = a_n$ $(n \ge 2)$. If we set $f(z)^k = \sum_{n=k}^{\infty} A_n^{(k)} z^n$, then the omitted arc $\Gamma = \mathbf{C} - f(U)$ satisfies

$$-P_n\left(\frac{1}{w}\right)\left(\frac{dw}{w}\right)^2 > 0,$$

where

(5)
$$P_n\left(\frac{1}{w}\right) = \sum_{k=1}^{n-1} \frac{A_n^{(k+1)}}{w^k}.$$

In [8] it is shown that $A_2 \neq 0$. If A_2, \ldots, A_{n-1} are all real, then from (5) we see that P_n is real on the real axis. The quadratic differential $-P_n(\omega) d\omega^2/\omega^2$ has a simple pole at $\omega = 0$. Hence, the remark preceding Theorem 2 implies that $1/\Gamma$ lies either on the positive or negative real axis. Hence, we must have $f(z) = z(1+z)^2$ or $f(z) = z/(1-z)^2$. This result can be improved.

J. E. BROWN

THEOREM 3. If $f(z) = z + \sum_{n=2}^{\infty} A_n z^n \in S$ is a support point for $L(g) = a_n \ (n \ge 4)$ and A_2, \ldots, A_{n-2} are real, then $f(z) = z/(1 \pm z)^2$, with $A_n = n$.

We shall make use of the following lemma.

LEMMA 2. If $f(z) = z + \sum_{n=2}^{\infty} A_n z^n \in S$ is a support point for $L(g) = a_n$ $(n \ge 3)$ and $A_n^{(3)}, \ldots, A_n^{(n-1)}$ are all real, then $f(z) = z/(1 \pm z)^2$, with $A_n = n$.

PROOF. Let $\Gamma = \mathbf{C} - f(U)$ be the omitted arc of f and let $\Gamma_0 = 1/\Gamma$. Thus, by (4), the arc Γ_0 satisfies $-P_n(\omega) d\omega^2/\omega^2 > 0$ in $|\omega| < 4$. Since $A_n^{(3)}, \ldots, A_n^{(n-1)}$ are all real, it follows from (5) that

(6)
$$\operatorname{Im}\{P_n(t)\} = t \operatorname{Im}\{A_n^{(2)}\}, \qquad t \in \mathbf{R}.$$

Assume that $\operatorname{Im}\{A_n^{(2)}\} \neq 0$. In this case we see that $\operatorname{Im}\{P_n(t)\} \neq 0$ along the real axis except at the origin. We apply Theorem 1(a) to conclude that Γ_0 meets the real axis only at $\omega = 0$. In particular, $\Gamma_0 \setminus \{0\}$ lies entirely in the upper or lower half-plane. We also know that

$$-A_2 = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{f(e^{i\theta})} d\theta.$$

In other words, $-A_2$ lies in the closed convex hull of the point set Γ_0 . Hence, A_2 lies in the upper or lower half-plane. However $A_2 = A_n^{(n-1)}/(n-1)$ is real (and nonzero) and we arrive at a contradiction.

Thus, we must have $A_n^{(2)}$ real, and so P_n is real on the real axis. We can then conclude from (4) that Γ_0 lies on the positive or negative real axis. Hence, $f(z) = z/(1 \pm z)^2$, with $A_n = n$.

PROOF OF THEOREM 3. We first note that the formula

$$A_n^{(m)} = \sum_{k=1}^{n-(m-1)} A_k A_{n-k}^{(m-1)}, \qquad 2 \le m \le n,$$

implies that $A_n^{(2)} = F_2(A_2, A_3, \dots, A_{n-1})$, where F_2 is a nonlinear function (with real coefficients) of the n-2 variables indicated. Next we see that

$$A_n^{(3)} = \sum_{k=1}^{n-2} A_k A_{n-k}^{(2)} = F_3(A_2, \dots, A_{n-2}),$$

where F_3 is a nonlinear function (with real coefficients) of the n-3 variables shown. Thus, in general, for $m=3,4,\ldots,n-1$ we see that

$$A_n^{(m)} = F_m(A_2, \dots, A_{n-m+1}),$$

where F_m has real coefficients and is a nonlinear function of the n-m variables shown. In particular, the highest coefficient of A_k appearing in $A_n^{(3)}, A_n^{(4)}, \ldots, A_n^{(n-1)}$ is clearly A_{n-2} . Hence, if A_2, \ldots, A_{n-2} are real then $A_n^{(m)}$ is real for $m=3,\ldots,n-1$. Now apply Lemma 2.

The author is indebted to the referees for their very helpful comments and suggestions.

REFERENCES

- 1. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940-955.
- 2. E. Bombierei, A geometric approach to some coefficient inequalities for univalent functions, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 377–397.
- 3. L. Brickman and D. Wilken, Support points of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523-528.
- 4. J. E. Brown, Univalent functions maximizing Re $\{a_3 + \lambda a_2\}$, Illinois J. Math. **25** (1981), 446-454.
- Z. Charzynski and M. Schiffer, A geometric proof of the Bieberbach conjecture for the fourth coefficient, Scripta Math. 25 (1960), 173-181.
- P. L. Duren, Extreme points of spaces of univalent functions, Linear Spaces and Approximation, Birkhäuser-Verlag, Basel, 1978, pp. 471-477.
- 7. J. A. Jenkins, Univalent functions and conformal mapping, Springer-Verlag, Berlin, 1958.
- 8. W. Kirwan and R. Pell, Extremal problems for a class of slit conformal mapping, Michigan Math. J. 25 (1978), 223-232.
- A. Pfluger, Lineare Extremalprobleme bei schlichten Funktionen, Ann. Acad. Sci. Fenn. Ser. A I no. 489 (1971).
- Ch. Pommerenke, Univalent functions (with a chapter on quadratic differentials by G. Jensen), Vandenhoeck and Ruprecht, Göttingen, 1975.
- A. C. Schaeffer and D. C. Spencer, Coefficient regions for schlicht functions, Amer. Math. Soc. Colloq. Publ., no. 35, Amer. Math. Soc., Providence, R.I., 1950.
- 12. M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc. (2) 44 (1938), 432-449.
- ______, On the coefficient problem for univalent functions, Trans. Amer. Math. Soc. 134 (1968), 95-101.
- G. Schober, Univalent functions—selected topics, Lecture Notes in Math., vol. 478, Springer-Verlag, Berlin and New York, 1975.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907